

Supervised Learning ML Models

Hayley Bresina
One Al Client Enablement

15 May 2024

Topics Covered

- Overview of supervised learning
- Two types of supervised learning classification & regression
- How supervised learning works at a high level
- Strengths & weaknesses of supervised learning

Learning Outcomes

- You gain a clear understanding of supervised learning as one of the main types of ML & its primary distinction from unsupervised learning
- You will be introduced to the two main types of supervised learning—classification & regression—& begin to understand their real-world applications
- You will familiarize yourself with the general process of supervised learning,
 laying the foundation for understanding how ML works
- You will understand its strengths & weaknesses, helping you to decide when
 it's suitable to use & when additional or different tools are more appropriate

Supervised Learning Overview

Overview

- ML models use algorithms to learn from data, identify patterns, make predictions, or perform tasks without explicit programming
 - An algorithm is the mathematical procedure, technique, or set of rules that the model follows to do so
- Supervised learning is a type of ML that uses labeled datasets to train algorithms
 - Utilizing labeled training datasets distinguishes it from unsupervised learning
 - Goal: understand relationships between input data & corresponding outputs,
 enabling the algorithm to make predictions when presented with unseen data
 - Use cases: categorizing data, pattern recognition, simplifying decision making, understanding relationships

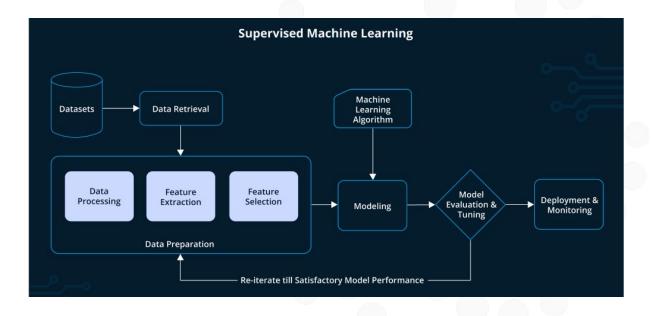
Two Types of Supervised Learning

2 Main Types of Supervised Learning

1. Classification

- Predicts a predefined discrete label or category; categorizes raw data based on learnings from training data
- Learns a decision boundary that separates different classes in the input feature space
- Example: predicting if an employee will terminate or not in the next year

2. Regression


- Predicts a continuous output based on learnings from training data
- Helps us understand the relationship between two or more variables
- Example: predicting an employee's salary or performance score

How Supervised Learning Works

Supervised Learning Process

- Data collection & retrieval
- 2. Data preprocessing
- Feature extraction & selection
- 4. Selecting an algorithm
- 5. Model training
- Model evaluation & tuning
- 7. Deployment & monitoring

Model-building is not always a linear process; it's **very iterative** & we often go back & forward steps as needed

Strengths & Weaknesses

Strengths

- Wide applicability
- Interpretability
- Effective performance
- Incremental learning

Weaknesses

- Bias & fairness concerns
- Data requirements (labeled data)
- Difficulty with unstructured data
- Limited performance with small datasets

Thanks for watching!

