One AI Machine Learning is an AutoML pipeline, meaning it’s an automated process for building machine learning models. One of the most powerful things this pipeline does is produce the best performing model with the least amount of user intervention possible. To accomplish this, a number of models are generated using different algorithms and settings each time a machine learning augmentation is run. The best performing model is then leveraged to make the predictions. This default behavior can be overridden by selecting a specific algorithm or algorithms in the configuration settings prior to running.
What follows is a list of all of the algorithms and settings attempted by default as well as the additional algorithms available. Where multiple values are listed for specific settings, multiple models are compared unless that setting is overridden.
Classification Algorithms
Classifiers Attempted by Default
LGBMClassifier https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
boosting_type: 'gbdt', 'goss'
n_estimators: 100
reg_lambda: 0.0
num_leaves: 31
learning_rate: 0.1
reg_alpha: 0.0
subsample: 1.0
subsample_freq: 0
colsample_bytree: 1.0
verbosity: -1
min_child_samples: 20
objective: None
class_weight: None
importance_type: 'split'
n_jobs: -1
max_depth: -1
subsample_for_bin: 200000
min_child_weight: 0.001
min_split_gain: 0.0
AdaBoostClassifier https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
n_estimators: 5
learning_rate: 1.0
algorithm: "SAMME.R"
base_estimator: None
RandomForestClassifier https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
n_jobs: -1
criterion: 'gini'
max_features: 'auto', 'sqrt', 'log2'
max_depth: None, 4, 8, 10, 12
min_samples_split: 2
min_samples_leaf: 1
min_weight_fraction_leaf: 0
max_leaf_nodes: None
min_impurity_decrease: 0
bootstrap: True
oob_score: False
verbose: 0
warm_start: False
class_weight: 'balanced'
n_estimators: 5
ccp_alpha: 0.0
max_samples: None
LogisticRegression https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
penalty: 'l1', 'l2'
dual: False
tol: 1e-4
C: 0.5, 1.0, 2.0
fit_intercept: True, False
intercept_scaling: 1.0
class_weight: None, 'balanced'
solver: 'liblinear'
max_iter: 100
multi_class: 'ovr'
verbose: 0
warm_start: False
l1_ratio: None
n_jobs: None
Optional Classifiers
DecisionTreeClassifier https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
criterion: "gini"
splitter: 'best'
max_depth: 4, 5
min_samples_split: 2, 3, 4, 5
min_samples_leaf: 1, 2, 4
min_weight_fraction_leaf: 0
max_features: None
max_leaf_nodes: None
min_impurity_decrease: 0
class_weight: None, 'balanced'
ccp_alpha: 0.0
KNeighborsClassifier https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
weights: 'uniform'
algorithm: 'auto'
leaf_size: 30
p: 2
metric: 'minkowski'
metric_params: None
n_jobs: -1
n_neighbors: 5
SVC https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
kernel: 'linear', 'poly', 'rbf', 'sigmoid'
gamma: 'auto'
shrinking: True, False
max_iter: -1
cache_size: 200
coef0: 0.0
decision_function_shape: 'ovr'
degree: 3
verbose: False
tol: 0.001
C: 1.0
class_weight: None
probability: False
break_ties: False
Regression Algorithms
Regressors Attempted by Default
LinearRegression https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
fit_intercept: True, False
normalize: False
copy_X: True
n_jobs: None
positive: False
RandomForestRegressor https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
n_estimators: 10
criterion: 'mse'
max_depth: None
min_samples_split: 2
min_samples_leaf: 1
min_weight_fraction_leaf: 0.0
max_features: 'auto'
max_leaf_nodes: None
bootstrap: True
min_impurity_decrease: 0
oob_score: False
n_jobs: None
verbose: 0
warm_start: False
ccp_alpha: 0.0
max_samples: None
Lasso https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
alpha: 1.0
fit_intercept: False
normalize: False
precompute: False
copy_X: True
max_iter: 1000
tol: 0.0001
warm_start: False
positive: False
selection: 'cyclic'
ElasticNet https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
alpha: 1.0
l1_ratio: 0.5
fit_intercept: False
normalize: False
precompute: False
max_iter: 1000
copy_X: True
tol: 0.0001
warm_start: False
positive: False
selection: 'cyclic'
LGBMRegressor https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
boosting_type: 'gbdt', 'goss'
n_estimators: 100
reg_lambda: 0.0
num_leaves: 31
learning_rate: 0.1
reg_alpha: 0.0
subsample: 1.0
subsample_freq: 0
colsample_bytree: 1.0
silent: True
min_child_samples: 20
objective: None
importance_type: 'split'
n_jobs: -1
max_depth: -1
subsample_for_bin: 200000
min_child_weight: 0.001
min_split_gain: 0.0
Optional Regressors
SVR https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
kernel: 'rbf'
degree: 3
gamma: 'auto'
coef0: 0.0
tol: 0.001
C: 1.0
epsilon: 0.1
shrinking: True
cache_size: 200
verbose: False
max_iter: -1
Ridge https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ridge_regression.html
alpha: 1.0
fit_intercept: True
normalize: False
copy_X: True
max_iter: None
tol: 0.001
solver: 'auto'
positive: False
HuberRegressor https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html
epsilon: 1.35
max_iter: 100
alpha: 0.0001
warm_start: False
fit_intercept: True
tol: 1e-05
GaussianProcessRegressor https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
kernel: None
alpha: 1e-10
optimizer: 'fmin_l_bfgs_b'
n_restarts_optimizer: 0
normalize_y: False
copy_X_train: True
SGDRegressor https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
loss: 'squared_loss'
penalty: 'l2'
alpha: 0.0001
l1_ratio: 0.15
fit_intercept: True
max_iter: 1000
tol: 0.001
shuffle: True
verbose: 0
epsilon: 0.1
learning_rate: 'invscaling'
eta0: 0.01
power_t: 0.25
early_stopping: False
validation_fraction: 0.1
n_iter_no_change: 5
warm_start: False
average: False
DecisionTreeRegressor https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
criterion: "squared_error"
splitter: 'best'
max_depth: 4, 5
min_samples_split: 2, 3, 4, 5
min_samples_leaf: 1, 2, 4
min_weight_fraction_leaf: 0
max_features: None
max_leaf_nodes: None
min_impurity_decrease: 0
ccp_alpha: 0.0
AdaBoostRegressor https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
n_estimators: 50
learning_rate: 1.0
loss: 'linear','square'
Comments
0 comments
Please sign in to leave a comment.